
Project No: SCSE20-0356

Image Recognition on an Embedded GPU Board

Submitted by: Thomas Stephen Felix
Matriculation Number: U1722308D

Supervisor: A/P Vun Chan Hua, Nicholas

School of Computer Science and Engineering

A final year project report presented to the Nanyang Technological University

in partial fulfilment of the requirements of the degree of

Bachelor of Engineering

2021

Project No: SCSE20-0356

Table of Contents
Abstract .. iv

List of Figures ..v

List of Tables .. vii

Chapter 1 Introduction ..1

1.1 Motivations .. 1

1.2 Objectives and Scope ... 2

Chapter 2 Literature Review...4

2.1 Computer vision and image recognition .. 4

2.1.1 Convolution layer... 6

2.1.2 Sub-Sampling Layer .. 7

2.1.3 Fully Connected Layer ... 7

2.1.4 Forward & Backward Propagation .. 8

2.2 Embedded Board .. 8

2.2.1 NVIDIA ... 8

2.2.2 Jetson Nano .. 9

2.2.3 Add-On capabilities ... 10

2.3 GPU.. 11

2.3.1 Architecture... 11

2.3.1 CUDA C... 13

Chapter 3 Materials & Methodology ..22

3.1 Jetson nano board set up. ... 22

3.1.1 Interfacing .. 23

3.2 CUDA Implementation .. 26

Project No: SCSE20-0356

3.2.1 Convolution using CPU (Serial) .. 26

3.2.2 Convolution using GPU (Parallel) ... 27

3.2.3 Convolution in Parallel using Shared Memory. ... 29

3.2.4 Convolution in Parallel using Constant Memory... 32

3.2.5 Convolution in Parallel using Shared & Constant Memory. 33

3.2.6 Convolution in Parallel using Texture Memory. ... 33

3.2.7 Convolution in Parallel using 2D Texture Memory. ... 34

3.3 OpenCV Implementation ... 34

Chapter 4 ..36

4.1 CUDA Results ... 36

4.1.1 Effect of kernel size on convolution algorithms .. 36

4.1.2 Effect of image size on convolution algorithms .. 43

4.1.3 Effect of block size on convolution algorithms ... 45

4.2 OpenCV Results... 46

Chapter 5 ..48

5.1 Conclusions .. 48

5.2 Recommendation in Future Work .. 48

References ..49

Appendix A .. 51

Appendix B .. 52

Appendix C .. 53

Appendix D .. 54

Appendix E .. 55

Appendix F... 56

Project No: SCSE20-0356

Abstract

The onset of artificial intelligence (AI) led to an inconceivable boom in the technology

industry. Furthermore, the dawn of AI and machine learning led to technological giants

pushing for systems capable of handling highly intensive mathematical calculations to

accommodate for possible machine learning implementations. Today, we have mobile

chips with machine learning engines optimized especially for machine learning algorithms.

Such advancements have revolutionized the face of the industry. In my project, I intend to

understand the various aspects of an embedded system with an on-board graphical

processing unit (GPU).

One such application of artificial intelligence is computer vision, a machine learning

technique used to provide machines with cognitive abilities. A wide variety of techniques

and methods have been explored and examined to improve this process. However, the most

relevant and commonly used technique is convolutional neural networks (CNNs). My

project takes advantage of the on-board GPU with the use of CUDA C to improve the

performance of convolutional kernels used in CNNs. Therefore, improving the efficiency

of image recognition algorithms.

Project No: SCSE20-0356

List of Figures

Figure 1 - Mapping features from input space to feature space. ... 5
Figure 2 - Image recognition architecture ... 5
Figure 3 - Convolution operation breakdown ... 6
Figure 4 - Max Pooling & Average Pooling ... 7

Figure 5 - Jetson Nano Developer Kit [12] ... 9
Figure 6 - Jtop overview page ... 10
Figure 7- Jtop GPU Usage - ... 11
Figure 8 - Jtop CPU usage .. 11

Figure 9 - GPU specifications ... 11
Figure 10 - Maxwell Architecture SMM .. 12
Figure 11 - CUDA C grid ... 13

Figure 12 - Simple CUDA kernel call .. 15
Figure 13 - Thread & Block implementation .. 16

Figure 14 - Memory allocation ... 17
Figure 15 - Memory hierarchy .. 19
Figure 16- Etcher Interface ... 22

Figure 17 - set IPv4 properties. ... 23
Figure 18 - choose network range. .. 24

Figure 19 - choose network card ... 24
Figure 20 - Run DHCP Server .. 24
Figure 21 - Get IP address given by DHCP .. 24

Figure 22 - SSH into machine ... 25

Figure 23 - ifconfig for Jetson Nano with WIFI ... 25
Figure 24 - Serial convolutional implementation ... 26
Figure 25 - Parallelized calls for convolution ... 28

Figure 26 - Code snippet for getting image pixel coordinate. .. 28
Figure 27 - Shared memory implementation .. 29

Figure 28 - Shared memory implementation kernel ... 30
Figure 29 - Shared memory working .. 31

Figure 30- Constant memory implementation .. 32
Figure 31 - Texture memory implementation ... 33
Figure 32 - 2D Texture memory implementation ... 34
Figure 33 - OpenCV serial convolution implementation .. 34

Figure 34 - OpenCV Parallel convolution implementation .. 35
Figure 35 – Kernel size comparison for serial & parallel ... 37
Figure 36 – Kernel size comparison for different parallel methods 37

Figure 37 - Kernel size comparison for different parallel methods (4096x4096) 38
Figure 38 - Parallel implementation comparisons (4096x4096) with adjusted block width

for shared memory implementation .. 39
Figure 39 - New shared memory working .. 40
Figure 40 - Parallel implementation comparisons (4096x4096) adjusted shared memory

implementation. .. 41
Figure 41 - Image size comparison for serial & parallel .. 43

Project No: SCSE20-0356

Figure 42 - Image size comparison for different parallel methods 44
Figure 43 - Block size comparison for different parallel methods 45
Figure 44 - OpenCV CUDA convolution ... 47

Project No: SCSE20-0356

List of Tables

Table 1 - Calculation of thread ID .. 15
Table 2 - Function Type Qualifiers ... 18
Table 3 - Variable Type Qualifiers ... 18
Table 4 - Parallel vs Shared memory implementation .. 31

Table 5 - Execution time comparison based on kernel size. ... 36
Table 6 - Execution time comparison based on image size. ... 43
Table 7- Execution time comparison based on block size. ... 45
Table 8 - Serial Vs Parallel OpenCV convolution comparison .. 46

Table 9 - Table with execution time for different convolution implementation styles 51
Table 10 - Table with speedup of different convolution implementation styles 52
Table 11 - Table with execution time for shared memory implementations with updated

block size value ... 53
Table 12 - Table with Speedup for shared memory implementations with updated block

size value ... 54
Table 13 - Table with execution time for share memory implementations with no

overlapping between blocks .. 55

Table 14 - Table with Speedup for share memory implementations with no overlapping

between blocks .. 56

Project No: SCSE20-0356

1

Chapter 1

Introduction

1.1 Motivations

The rising popularity of image processing and image recognition algorithms has left a

need for implementations of more efficient algorithms. CUDA (Compute Unified

Device Architecture) [7] as a heterogenous architecture of CPU & GPU (Graphical

Processing Unit) has made a wide impact on a multitude of industries and has

consistently outperformed various other systems and implementations. Its ability to

implement and control multi-threading in the GPGPU (General Purpose Graphical

Processing Unit) has been used to speedup otherwise slower image processing

algorithm.

In [1], Sajin Choi & Kwangyeob Lee implement a CUDA-based convolutional network

from scratch. Their implementation of convolutional and pooling kernels involved the

assignment of kernel to individual blocks which would then generate a corresponding

output feature map in parallel. They employed parallel threading for computation of the

fully connected layer and weight update to improve the throughput of the system. They

make use of the NVIDIA CUDA architecture to introduce parallelization and hence

improve the throughput of a CNN by approximately 3.5 times when compared to a CPU

core and 2.5 times when compared to an OpenMP implementation. Thus, highlighting

the computational power and efficiency obtained when using CUDA C.

CUDA C, has been used extensively especially in image processing. [2] & [6], shows

how the use of CUDA C to implement a CT image reconstruction and transmission

Project No: SCSE20-0356

2

algorithm respectively has shown considerable improvement in throughput. The

speed up introduced highlight the computational power possible when using CUDA C.

This is further established in [3]. A comparison being made between GPU, FPGA &

MATLAB implementations of convolutions establishes the dominance of CUDA C’s

parallel threading capabilities. Nevertheless, the implementation of CUDA C is based

on spatial separable convolutional kernels which consists of a small subset of possible

kernels. Therefore, it may prove beneficial to compare a more generic implementation

of CUDA C based convolution to obtain more significant results.

In [4], several CUDA C convolutional algorithms are used. Of these several algorithms,

convolution done with the help of multiple blocks seems to produce the best

performance. The implementation takes advantage of the max number of blocks along

one direction of the CUDA grid which is 65535 and uses a 2D grid implementation to

calculate the values of a pixel per block. This is done by using the shared memory

within a block. The shared memory will be assigned multiplied values provided by

threads and then giving one thread the responsibility of summing up all the values

within a block. While the experimental results indicate significant improvement, the

results obtained were for an image size of 31x31 and a kernel size of 16x16. These sizes

may not provide accurate representations of images with sizes up to 2048x2048.

Furthermore, this limits the size of the kernel to 32x32, which is the limit on the number

of threads per block.

1.2 Objectives and Scope

I aim to implement methodologies using the CUDA architecture that improve the

performance of the most used image recognition algorithm i.e., convolution. This is

done to improve the convolution operation with the means of threading on a GPU. This

is done by making use of the resources on board such as constant, shared and texture

memory. Furthermore, a detailed comparison will be done with regards to the effects of

Project No: SCSE20-0356

3

kernel size, image size and block size on computational cost.

In addition, I aim to compare my CUDA implementations with an open-source library

known as OpenCV. OpenCV is used for image processing as well as implementation of

image recognition models. We use OpenCV’s CUDA interface to compare our results

with a pre-existing library to gauge the performance improvement attained. We will

discuss other interfaces that use CUDA to improve performances as well.

Project No: SCSE20-0356

4

Chapter 2

Literature Review

2.1 Computer vision and image recognition

Computer vision (CV) refers to the methodologies used to allow a machine to see [10].

Ever since the boom of Artificial Intelligence, computer vision has been a major field

of interest with multiple applications across fields such as robotics and signal

processing. The objective is to better understand the content of images and videos, then

use this information to perform human like tasks such as identifying human emotions.

Early concepts of computer vision included image enhancements and edge processing.

With the onset of neural networks, the field of computer vision was greatly impacted.

The use of Neural Networks allowed for more information to be extracted from images.

Image and Object recognition are two such applications of computer vision that

experienced great advancements with the onset of neural networks. The working of

neural networks involves the generation of feature vectors. These feature vectors help

the computer interpret various features of the image which are then used to classify

images. We observe that when an n-dimensional feature vector is mapped to feature

space, images with similar features are grouped together which allows for better

classification of images.

Project No: SCSE20-0356

5

Figure 1 - Mapping features from input space to feature space.

The use of deep neural networks allowed for the learning of hidden features observed

in data. These hidden features helped a machine to better distinguish between classes

of images. However, if we were to use a simple deep neural network in order to

implement an image recognition algorithm, each pixel would be used as an input and

the information of the neighboring pixels would be lost [11].

To overcome the shortcomings of a typical deep neural network, multiple convolutional

kernels were used in groups and in succession on images to extract or summarize

information. This in turn led to the development of Convolutional Neural Networks

(CNN). The image below shows how image recognition is typically implemented with

use of a CNN.

Figure 2 - Image recognition architecture

Project No: SCSE20-0356

6

2.1.1 Convolution layer

Figure 3 - Convolution operation breakdown

The first step of CNNs involves the use NxM kernels to create many small pieces called

features [11]. These kernels assign different weights to values around the point of

interest. The values of the image are then multiplied with those of the kernel to generate

summarized information around an area of interest. The figure above helps visualize

the process of a convolutional kernel. The point of interest refers to the source pixel in

the image.

Convolutional kernels can be of various sizes depending on the size of the output

required and the stride of the kernel (stride refers to the distance between current point

of interest to the next). To attain complete information from the image, generally images

are GENERALLYzero-padded (adding zeros to the border of images) to perform

convolution along the borders of images as well.

Project No: SCSE20-0356

7

Convolution is the most important and time-consuming aspect of a CNN algorithm. It

involves a series of multiplications and additions for each pixel. This makes it quite

burdensome on a simple CPU architecture. Therefore, we make use of a GPGPU to

improve the computation time of such algorithms with the help of multi-threading.

2.1.2 Sub-Sampling Layer

The sub-sampling layer helps limit the information by reducing the number of pixels

and highlighting the most relevant information. In the sub-sampling layer, we either

make use of max-pooling or average-pooling.

• Max-Pooling: Maximum value from a window is used to represent all the

information within the window.

• Average-Pooling: Average value of all elements within a window is used to

represent the information within the window.

Figure 4 - Max Pooling & Average Pooling

2.1.3 Fully Connected Layer

The final layers involve connections from every output to every possible label. This

allows the calculations of a probability score for every class possible. Once each score

is calculated, the category with the highest score is used as the category for the image.

Project No: SCSE20-0356

8

2.1.4 Forward & Backward Propagation

In neural networks, forward propagation refers to how data is processed by the neural

network to obtain a result. Whereas backward propagation refers to how the difference

between obtained result and required result can be used to update the weights of the

various layers in a neural network.

In CNNs, during back propagation we update the values of convolutional kernels for

better representation of hidden features. Thus, improving the accuracy of the neural

network.

2.2 Embedded Board

Embedded boards consist of a variety of processors, ICs (Integrated circuits), storage

and other essential components to serve a function. Embedded board have applications

in automotive, industrial, and audio video. [17]

2.2.1 NVIDIA

The Nvidia Corporation is a MNC who’s primary objective is the design of graphical

processing units. They provide frameworks that allows researchers to exploit the

parallel processing capabilities of a GPU to run computationally expensive algorithms.

There are a multitude of NVIDIA Jetson systems that allow the development of

autonomous machines. They each have a complete SOM (System-on-Module),

inclusive of CPU, GPU & storage. The products include Jetson Nano, the Jetson TX2

Series, Jetson Xavier NX, Jetson AGX Xavier Series.

Project No: SCSE20-0356

9

2.2.2 Jetson Nano

Figure 5 - Jetson Nano Developer Kit [12]

For this project we make use of an NVIDIA Jetson Nano Developer Kit. The Jetson

Nano is basically a small and compact computer system with an in-built CPU & GPU.

The kit is used for the implementation of neural networks that require parallel threading

capabilities. Its applications include image classification, object detection and speech

processing [12]. The Jetson Nano is ideal for implementing small-scale projects such

as mini robots that can sense and traverse complex environments.

The kits specifications are as follows:

CPU Quad-core ARM A57 @ 1.43 GHz

GPU 128-core Maxwell

Memory 4 GB 64-bit LPDDR4 25.6 GB/s

USB 4x USB 3.0, USB 2.0 Micro-B

Display HDMI and display port

2.2.2.1 Built-in capabilities

The Jetpack SDK for the Jetson Nano includes CUDA for GPU accelerated applications

across multiple domains inclusive of NVCC which is a CUDA compiler. It forwards all

non CUDA compilation to a C++ host compiler. Additionally, jetpack also includes

TensorRT and cuDNN which are used for high-performance deep learning applications.

Project No: SCSE20-0356

10

2.2.3 Add-On capabilities

2.2.3.1 OpenCV

A computer vision library used for image and video processing. Its applications include

edge detection, histogram generation and image recognition.

2.2.3.2 Tegrastats

Jetson device utility used for memory usage and processor usage.

2.2.3.3 Jtop

We use Jtop as a profiling resource. It helps provide statistics on CPU, GPU and

memory usage.

Figure 6 - Jtop overview page

Project No: SCSE20-0356

11

Figure 7- Jtop GPU Usage -

Figure 8 - Jtop CPU usage

2.3 GPU

2.3.1 Architecture

Figure 9 - GPU specifications

Project No: SCSE20-0356

12

The statistics above refers to a specification sheet for the on-board GPU. The NVIDIA

Tegra X1 was released in 2015 using the Maxwell GPU architecture. Originally, It was

intended to improve the gaming experience and deliver 4K video quality on mobile

devices when it was released. It then went onto star in the NVIDIA SHIELD Android

TV [15]. The Tegra X1 is also being used in the Jetson Nano as it includes capabilities

that help advance computer vision and deep learning.

The Tegra X1 is equipped with features such as OpenGL, CUDA 6.0 and DirectX 12

API. The Tegra X1 used in mobile devices consisted of 256 CUDA cores. However, the

Tegra X1 on the Jetson Nano consists of only 128 CUDA cores.

Figure 10 - Maxwell Architecture SMM

Project No: SCSE20-0356

13

The NVIDIA Jetson Nano makes use of a GM20B GPU with CUDA compute

capability 5.3. It has the Maxwell 2.0 architecture. It inherits several features from its

predecessor, the Kepler microarchitecture. The objective of the Maxwell architecture

was to introduce improved Streaming Multiprocessor (SM). The image above shows

the diagram of a single Streaming Multiprocessor.

The Maxwell SM has four 32-CUDA core processing blocks called SMP with a total

of 128 CUDA cores in a single SM. Each partition has its own dedicated resources used

for scheduling and instruction buffering. The architecture aligns with the warp size with

the number of CUDA cores per partition (i.e., 32) which improves efficiency. CUDA

makes use of SIMT (Single Instruction Multiple Threads) model. This is where threads

that perform the same instruction are grouped together by a mechanism called warp.

Each warp is then mapped to an SMP and instructions are sent to the 32 CUDA cores.

Additionally, the architecture used a larger dedicated 64 kb shared memory for all

partitions.

2.3.1 CUDA C

Figure 11 - CUDA C grid

Project No: SCSE20-0356

14

2.3.1.1 Multi-Threading

The CUDA Grid is the basic knowledge required to understand the thread hierarchy.

The compute capability of the Jetson Nano is 5.3 and its specifications can be found in

[16].

• A CUDA grid consists of multiple CUDA blocks. Each block is executed

consecutively by a single SM.

• A single SM can have up to 32 (or 2048 threads) blocks reside in it once

depending on available resources. Once all threads within a block finished

execution, its resources are freed, and another block can take its place [16].

• The maximum number of blocks is only limited by the maximum grid

dimension which is equal to (2147483647, 65535, 65535) for the Jetson Nano.

• A maximum number of 1024 threads are allowed within a block.

CUDA C is an extension of C. One of the major differences come using kernels. Kernels

are a function executed in parallel by different threads. The number of threads is defined

by the user. To define a kernel, we use the __global__ declaration. This declaration

implies that the function is to be executed by the device (the GPU) and can be called

only by the host only (the CPU). While making a call to a kernel function, we must

establish an execution configuration. The execution configuration takes the format <<<

Dg, Db, Ns, S >>>. Dg refers to the dimensions and size of the grid or the number of

blocks that is to be used. Db refers to the dimensions and size of the blocks. Ns indicates

the number of bytes in the shared memory that is to be dynamically allocated. Finally,

S is an optional parameter that specifies the type of stream [7].

Project No: SCSE20-0356

15

Figure 12 - Simple CUDA kernel call

In line 4 we observe the use of threadIdx. The threadIdx is a 3-component vector

(threadIdx.x, threadIdx.y, threadIdx.z) used for identification of threads. Depending on

the number of dimensions in the blocks, we can use the threadIdx to find a unique 3-

dimensional ID to control the function of the thread. If the three-dimensional size of a

block is given by (Dx, Dy, Dz), the thread ID can be calculated as follows.

Note: Id refers to a unique value associated to every thread whereas index is 3-

dimensional coordinate (x, y, z)

Table 1 - Calculation of thread ID

Dimensions Thread ID

1 dimension - (x) 𝑥

2 dimensions - (x, y) 𝑥 + 𝑦 ∗ 𝐷𝑥

3 dimensions - (x, y, z) 𝑥 + 𝑦 ∗ 𝐷𝑥 + 𝑧 ∗ 𝐷𝑥 ∗ 𝐷𝑦

The total number of threads in a block is limited to 1024 as shown in the figure 10.

However, to accommodate for this, we can make use of multiple blocks containing

equal number of threads.

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘𝑠 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘

Project No: SCSE20-0356

16

To calculate thread index for threads across multiple blocks, we make use of blockIdx

& blockDim. blockIdx is a 3-component vector (blockIdx.x, blockIdx.y, blockIdx.z)

used to access the block index of the block in which the thread is contained. Whereas

blockDim is a 3-component vector (blockDim.x, blockDim.y, blockDim.z) used to

access the dimensions of the block. When dealing with multiple blocks, we use the

following formulas to access the thread index.

𝑥 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑥 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑥 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑥

𝑦 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑦 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑦 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑦

𝑧 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥. 𝑧 ∗ 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚. 𝑧 + 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥. 𝑧

Figure 13 - Thread & Block implementation

However, the above implementation would fail to compile. In CUDA C, the GPU is a

secondary device and the system on which the programs run are considered the host.

Therefore, the GPU has its own separate memory and to access it, we must make use

of function calls that help transfer the data from host to device. To assign linear memory,

we make use of the following function calls.

• cudaMalloc: allocate linear memory on the device.

• cudaMemcpy: transfer data form host to device memory.

• cudaFree: free memory allocated on device.

Project No: SCSE20-0356

17

Figure 14 - Memory allocation

The above code is a complete implementation of a two-dimensional matrix addition

using the parallel threading with multiple blocks.

Project No: SCSE20-0356

18

2.3.1.2 Memory Hierarchy

Table 2 - Function Type Qualifiers

Function Type Qualifiers __device__ __global__ __host__

Executed on Device Device Host

Callable from Device Host Host

Function type qualifiers help indicate whether a function will be executed by the device

or the host and who has access to call the function. As seen earlier, kernels used

__global__ qualifier to indicate functions that are callable by the host but are to be

executed on the device. For functions that can either be called by host or device, we can

use __host__ & __device__ together while declaring a function.

Table 3 - Variable Type Qualifiers

Variable Type

Qualifiers

__device__ __constant__ __shared__

Location

global memory

space

constant memory

space

shared memory space of thread

block

Lifetime application application thread block

Accessibility

all thread within

grid

all thread within grid all threads within block

Variable type qualifiers are more important as we will be constantly working with them

in this project. The variable type qualifiers establishes where the data will be stored in

device memory and how long it will be stored in the specified location. This

understanding helps us navigate various methods of improving the throughput of the

system by taking advantage of these available memory features.

Project No: SCSE20-0356

19

CUDA threads may access data from multiple memory spaces during their execution.

• Each thread has private local memory.

• Each thread block has shared memory visible to all threads of the block and

with the same lifetime as the block.

• All threads have access to the same global memory.

• There are also two additional read-only memory spaces accessible by all

threads: the constant and texture memory spaces.

Figure 15 - Memory hierarchy

Global Memory: Global memory is accessible and shared by all threads as it resides

on the device. The memory transactions with global memory generally take place as

32-, 64- or 128- byte sized transactions. The warp executes access to the global memory,

and it does so by grouping memory accesses of multiple threads. This is done as each

transaction to the memory brings along with it more words than necessary. Therefore,

a greater number of transactions leads to a reduction in throughput.

Project No: SCSE20-0356

20

Shared Memory: This memory is shared between threads of the same block. When

compared to global memory, it has higher bandwidth and lower latency. Shared memory

makes use of the concept of banks. This is where the memory is equally partitioned into

modules referred to as banks. These banks allow simultaneous read and write and hence

improves its bandwidth. The hardware tries to optimize the process by splitting memory

accesses to avoid or reduce the number bank conflicts. Bank conflicts occur when two

memory requests are made to the same memory bank.

Shared memory is an important concept to improve the throughput of any CUDA

system. It behaves as a user defined cache. It works such that we define a shared

memory location in the block (using the __shared__ type qualifier as mentioned before).

Then each thread makes an assignment based on the thread ID. These memory locations

can then be used by any thread within the same block, regardless of which thread

assigned it.

Eg. Consider a summation of 3 elements in a 1D array done with a block size of 7.

Global

Memory
1 3 2 4 3 5 4 6 5

Shared

Memory
 3 2 4 3 5 4 6

Result 9 9 12 12 15

An important CUDA function extensively used with shared memory is the

__syncthreads() function. Its objective is to wait for all threads within a block to reach

the same point to avoid conflicts. This is important when using shared memory, so as

to avoid accessing shared memory locations that have not been assigned by a thread yet.

Project No: SCSE20-0356

21

Constant Memory: Constant memory resides in a read-only device memory and is

cached in constant cache memory. A read from constant memory takes one read cycle

from constant cache or one read cycle from constant memory in the case of a cache

miss. Warp requests are first broken down into two requests, one for each warp. Once

this is done, for each half warp, the requests are further broken into read requests for

distinct memory locations and decreases throughput by the number of requests per

memory location. The throughput increases linearly with the number of distinct

requests. Constant memory is used when there is a need to have access to data that will

not change during the lifetime of execution.

Texture Memory: Texture memory is like global memory, with an added feature of

another read-only cache located on the device. It is designed to perform fetching with

similar latency. Texture should be used when threads of a block accesses different areas

of the bound-global memory in a non-orderly fashion. Texture memory is optimized

for 2D spatial locality and provides better performance when threads of the same warp

try to access memory locations that are neighboring each other in 2D space.

Project No: SCSE20-0356

22

Chapter 3

Materials & Methodology

3.1 Jetson nano board set up.

The NVIDIA Jetson Nano can host an Operating System (OS). For our initial setup we

make use of Jetson Nano Developer kit more commonly known as JetPack (latest version

4.5.1) [13]. This is available as an open resource on the Jetson Nano home page. Once we

download the kit, we load it into a SD card using a software known as Etcher. The software

allows us to write the image of the OS into the SD.

Figure 16- Etcher Interface

We then insert the microSD card into the Jetson Nano, after which we connect a power

cable to power on the machine. In addition, we connect a monitor via the HDMI port, a

mouse, and a keyboard to set-up the system configurations.

Project No: SCSE20-0356

23

This step can also be accomplished headless via the use of PuTTY. However, this requires

a barrel jack connecter to power the device as the micro-USB slot is required to access

initial configuration prompts. Ubuntu is the OS included in JetPack.

3.1.1 Interfacing

To access the Jetson Nano, we use SSH (Secure Shell). The use of SSH allows us to

remotely login and use issue commands via the terminal on the system. However, to do so,

the IP address of the server machine must be known.

We first connect the board via the ethernet cable to a computer. We observe that the SSH

is not possible as a static IP address has not been provided to the device. We then configure

the connection (Ethernet 2) by changing the IPv4 properties under network connections by

setting the IP address to 192.168.1.1 with a subnet mask of 255.255.255.0.

Figure 17 - set IPv4 properties.

Project No: SCSE20-0356

24

We then download a DHCP (Dynamic Host Control Protocol) server that can be used to

run locally on a windows machine from www.dhcpserver.de. We then configure the DHCP

Server using the DHCP wizard as follows.

Figure 18 - choose network range.

Figure 19 - choose network card

We first set the DHCP server to run on the network card of the connection for which the

DHCP server is disabled. We then configure the DHCP server to range from 192.168.1.1 –

192.168.1.254. We save these configurations.

Figure 20 - Run DHCP Server

Figure 21 - Get IP address given by DHCP

We then start the DHCP server with administrator privileges. Once the DHCP server is up

and running, it assigns IP addresses to devices on the network. In a few minutes, a

notification pops up stating that Jetson Nano has been assigned the IP address 192.168.1.2.

We then use this address to SSH into the machine and access it.

http://www.dhcpserver.de/

Project No: SCSE20-0356

25

Figure 22 - SSH into machine

Once we have access into the system, with a few simple steps we can set up a WIFI

connection [14].

• ifconfig wlan0 up

• iwconfig wlan0 essid WIFI_NETWORK_HERE key PASSWORD_HERE

• dhclient wlan0

Figure 23 - ifconfig for Jetson Nano with WIFI

Once connected to the WIFI, we can use ifconfig to find the IP address using the WIFI

module. This would allow us to SSH into the machine using the WIFI rather than ethernet,

thus allowing mobility. Furthermore, when connected via ethernet, the system diverts all

internet requests via the ethernet cable, and hence is unable to connect to the internet. This

method allows us to be connected to Jetson Nano while at the same time allowing the Jetson

board to be connected to the internet.

Project No: SCSE20-0356

26

3.2 CUDA Implementation

As discussed, convolution is the most important and time-consuming function in CNNs.

Thus, we investigate different methods to improve the efficiency of convolution algorithm

with the help of a GPU and use of different types of memory for faster retrieval and

processing of data.

3.2.1 Convolution using CPU (Serial)

We process the convolution operation by first reading the convolutional kernel and image

in a 1-dimensional array. This is easier to handle and transfer to device memory (GPU)

during execution. We then repeat the convolution process on every pixel in the image to

get the corresponding output pixel. The pixels are then used to form the convoluted image.

Figure 24 - Serial convolutional implementation

The illustration below is used to demonstrate the working of the code.

We first load kernel values from an external file. Once the kernels are loaded, we normalize

the kernel by dividing all values in it by the sum of the values. This helps us generate an

image with a blurred effect. This is to properly analyze and compare results. However, the

normalization step can be skipped or replaced to produce images with higher degrees of

convolution.

Project No: SCSE20-0356

27

The image is also loaded into a 1-dimensional array that is equal to the size of the product

of image width and the image height. We then use the index location of the center element

to find the surrounding elements with which convolution is to be done. In the example

below, we use an image of size 4x5 and the pixel 2x2 is the center of the kernel with which

convolution is to take place.

Note: 1st row: Pixel value, 2nd row: 1D-index, 3rd row: Image position (RxC)

0 255 34 26 78 34 1 245 219 2 3 99 101 111 200 78 33 56 4 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0x0 0x1 0x2 0x3 0x4 1x0 1x1 1x2 1x3 1x4 2x0 2x1 2x2 2x3 2x4 3x0 3x1 3x2 3x2 3x4

1 2 1 1 245 219

3 2 1 ⁎ 99 101 111 = 1477

1 2 3 33 56 4

3.2.2 Convolution using GPU (Parallel)

To improve the efficiency of the algorithm, we farm out the convolution operation to the

GPGPU with the help of CUDA C. In such a scenario, multiple threads are used to run the

convolutional kernel on each pixel in parallel.

We use the x and y coordinate of the thread to perform convolution on the corresponding

pixel of the image. The kernel and image data are copied from host memory to the global

memory of the device from which all threads in all blocks of the GPU can access.

Note: Further code will emphasize on changes done on the above code and not the entire

code itself

Project No: SCSE20-0356

28

Figure 25 - Parallelized calls for convolution

Since most of the change occurs in how the function to apply the kernel on each pixel is

called, the above code uses basics discussed in (CUDA C) to implement parallel threading.

The above code snippet shows how we break down an image into individual blocks of size

BLOCKWIDTHxBLOCKWIDTH. We then use the kernel index to access the pixel that is

to be convoluted by the thread.

Figure 26 - Code snippet for getting image pixel coordinate.

Project No: SCSE20-0356

29

3.2.3 Convolution in Parallel using Shared Memory.

In comparison to local or global memory, shared memory has a higher bandwidth and lower

latency since it is on-chip. Shared memory is accessible to all threads within a block of

threads.

We make use of the shared memory to save a section of the image that is relevant to the

threads within a block. Thus, reducing access to the global memory and reducing latency

for memory access of image information.

Shared memory is implemented during the execution of kernels as discussed before.

Therefore, we take advantage of this process by loading image values corresponding to a

block by making use of the thread index. E.g., If we have a block size of 16x16, we load a

region of the image of size 16x16 in the shared memory. However, as convolution depends

not just on the pixel value itself but the surrounding pixels as well, we must make use of

blocks that overlap in image space.

Figure 27 - Shared memory implementation

Project No: SCSE20-0356

30

Figure 28 - Shared memory implementation kernel

Take note in line 20 of figure 27, we make use of the shared memory size parameter to

dynamically allocate shared memory and declaring the shared variable on line 32 as an

extern variable. This is to avoid unnecessary allocation of shared memory as such memory

allocations are time consuming and lead to a waste of memory.

Furthermore, with reference to figure 9, we observed that shared memory is allocated only

49152 bytes per block. This therefore sets an upper limit to block width as larger block

widths would require more memory per block.

𝑠ℎ𝑎𝑟𝑒𝑑 𝑚𝑒𝑚𝑜𝑟𝑦 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘

𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡)
=

49152

4
= 12288

max 𝑏𝑙𝑜𝑐𝑘 𝑤𝑖𝑑𝑡ℎ = √12288 ~ 110

However, this number is inconsequential, as the max number of threads per block as shown

in figure 9 is 1024. Therefore, max block width is constrained to 32x32.

The figure below helps us understand our shared memory implementation with depth (not

drawn to scale). The overlap region indicated are regions partially calculated by two blocks:

block (0,0) and block (0,1). This is because to convolve the values of pixels on the left of

Project No: SCSE20-0356

31

the overlapping region, we require values to the right of the pixel as well. Similarly, in

block (0,1) we find the convoluted values of pixels to the right of the overlapping region

by considering pixels to the left of the overlapping region as well.

Figure 29 - Shared memory working

However, the use of shared memory in such a manner may lead to a significant decrease in

throughput. This is because the effective width of a block is reduced by a factor of kernel

size – 1. Therefore, requiring a greater number of blocks and threads to process the entire

image.

Table 4 - Parallel vs Shared memory implementation

 Image Size Block Size
Kernel

Size

Effective

Blocks Size
Grid Size # of blocks

Naïve Parallel 512x512 16x16 5x5 16x16 32x32 1024

Parallel – Shared

Memory
512x512 16x16 5x5 12x12 43x43 1849

Project No: SCSE20-0356

32

3.2.4 Convolution in Parallel using Constant Memory.

Constant memory refers to a read only memory that resides on the device and is cached in

the constant cache. Since the kernel, kernel size and image size remain constant for all

threads, we make use of the constant memory to store this information. Since this

information is stored in cache memory, access time is reduced and hence performance is

increased.

Figure 30- Constant memory implementation

We first declare the constant variables outside all function definitions as global variables.

These variables sizes do not affect the throughput of the convolution function. This is

because the variables are created and allocated at the beginning of program execution. They

are only assigned values when the function is called. We have assigned an arbitrary size of

64x64 for the kernel in our implementation. However, max size of constant memory with

reference to figure 19 is 64 kb and we can have a kernel of size 128x128 if no other constant

variables are declared.

Project No: SCSE20-0356

33

3.2.5 Convolution in Parallel using Shared & Constant

Memory.

We use a combination of shared and constant memory to see how much we can better our

convolution algorithm. This is done by declaring as constants, values that do not change

regardless of which thread accesses them, such as the kernel, kernel height and width, and

image height and width. Furthermore, we break the image into blocks which is then passed

on to the shared memory of a block and can be accessed by threads depending on the thread

index.

3.2.6 Convolution in Parallel using Texture Memory.

Texture memory is also a read-only memory that resides on the device but are cached in

texture cache.

Figure 31 - Texture memory implementation

Project No: SCSE20-0356

34

3.2.7 Convolution in Parallel using 2D Texture Memory.

Texture cache is optimized for 2D spatial locality and hence threads of the same warp that

close together in 2D will achieve the best result.

Figure 32 - 2D Texture memory implementation

3.3 OpenCV Implementation

The code below refers to a basic implementation of convolution both in serial and

OpenCV’s interface for CUDA C.

Figure 33 - OpenCV serial convolution implementation

Project No: SCSE20-0356

35

Figure 34 - OpenCV Parallel convolution implementation

Project No: SCSE20-0356

36

Chapter 4

Results and Discussion

4.1 CUDA Results

The execution time and speedup of the different methods used for convolution have been

recorded in tables given in appendix A and appendix B respectively. The table contrasts the

convolution methods for different sizes of kernel, images, and block sizes. We shall now

look at trends to compare and analyze the different methods. These results are calculated

after performing the functions for 100 iterations or after running for 5 mins, whichever

comes first.

4.1.1 Effect of kernel size on convolution algorithms

Table 5 - Execution time comparison based on kernel size.

Kernel

Size
Serial

Naïve

Parallel

Shared

Memory

Parallel

Constant

Memory

Parallel

Shared +

Constant

Memory

Parallel

Texture

Memory

Parallel

2D

Texture

Memory

Parallel

3x3 75.408 19.588 12.78 7.8 9.991 11.521 10.495

5x5 197.797 16.741 20.109 14.477 16.147 24.238 24.787

7x7 363.994 24.448 28.459 23.014 24.674 27.209 27.182

9x9 588.575 22.005 25.262 26.221 25.703 29.397 32.191

11x11 864.658 24.921 28.228 27.175 30.296 31.767 29.996

The above table refers to average time taken to complete a function in milliseconds. The

images used was of size 512x512 and the size of blocks used in the grid were of size 16x16.

Project No: SCSE20-0356

37

Figure 35 – Kernel size comparison for serial & parallel

Figure 36 – Kernel size comparison for different parallel methods

Our major observation arises from the improvement from serial to parallel implementation.

The time taken to complete a convolution using a serial CPU increases almost

exponentially with an increase in kernel size. In comparison, our parallel GPU

implementation maintains almost constant time.

On closer analysis of GPU implementations, we make a variety of different and important

observations. Firstly, for a kernel of size 3x3, we observe that a Naïve parallel method takes

Project No: SCSE20-0356

38

the most time when compared to other implementations. This trend however is not

observed as the kernel size grows larger. Secondly, constant memory shows the best

performance, over runs multiple runs and image sizes. Constant memory consistently

provides performance equal or better than a naïve parallel implementation. However

contrary to expectations, shared memory and shared with constant memory implementation

fails to provide adequate performance. Finally, texture and texture 2D provides similar

performance but both show the worst performance of all implementations. These

observations are more pronounced, as we increase the image size as follows.

Figure 37 - Kernel size comparison for different parallel methods (4096x4096)

Why is the shared memory implementation under-performing?

The answer to this question is 3-fold.

• Firstly, our implementation of shared memory makes use of blocks of smaller sizes

(block width – kernel width + 1). This increases the number of blocks used during

the convolution process and hence leads to an increase in overall time and reduction

in throughput.

Project No: SCSE20-0356

39

• Second, Additional latency to create and transfer data from the global memory to

shared memory.

• Finally, due to the requirement of convolutional kernels to access neighboring data,

there are circumstances when two threads may try to access the same shared

memory banks. As the kernel size increases, the overlapping regions of kernels

increases and hence, bank conflicts increase, reducing throughput.

We can tackle the use of reduced width of blocks by considering kernel size. Therefore, we

implement an algorithm that generates blocks of size that is inclusive of the kernel width

(block width + kernel width - 1). Therefore, when we consider the overlapping region, our

block size returns to its original size. The recalculated values of execution time and speedup

that have been observed and represented in appendix C and appendix D. The following

graphs represents the recalculated values of shared memory implementations and its impact.

Figure 38 - Parallel implementation comparisons (4096x4096) with adjusted block width for shared

memory implementation

Project No: SCSE20-0356

40

As expected, the performance of the shared memory implementations has significantly

improved. We can observe. that the performance of shared and constant memory

implementation has improved in terms of throughput and provides results equivalent or

better (at smaller kernel sizes) to a naïve & constant memory parallel implementation.

However, this implementation adds additional restrictions on kernel size. The maximum

size of thread block is 1024 thread which implies a block width of 32. This restriction must

be kept in mind when performing convolution using shared memory. In appendix C, we

observe that shared memory implementations of block size 24x24 and kernel size 11x11

remains empty. This is because the adjusted block size becomes 34x34 (1156 threads)

which is greater than the maximum allocatable threads per block.

To overcome the limitations on block size, we develop an algorithm that aims to overcome

the issues faces by considering overlapping blocks.

Figure 39 - New shared memory working

Project No: SCSE20-0356

41

We implement the algorithm such that for every thread, we construct a 2D rectangle with

a size equal to size of the block. We then assign shared memory locations at the corner of

every rectangle, not inclusive of the point itself. This allows each thread to allocated at

most four shared memory location. This method frees us from the limitations cause by

using overlapping regions between blocks and additionally helps improve overall

performance.

Figure 40 - Parallel implementation comparisons (4096x4096) adjusted shared memory implementation.

This results to shared memory implementations outperforming naïve and constant memory

implementations. Although when compared to shared memory implementations, there

exists an overhead of assigning more than one pixel per thread, this overhead is a good

trade-off for the improvement in throughput of the image convolution algorithm.

Furthermore, the algorithm allows to use block size of 32x32. Updated table with for shared

memory implementation without overlapping blocks is given in appendix E and F.

While the shared memory implementation referred before has an effective size of 16x16,

the block size still generated would be size 26x26 for a kernel of size 11. Thus, a greater

number of threads will be used when compared to a standard 16x16 block.

Project No: SCSE20-0356

42

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑓𝑜𝑟 𝑘𝑒𝑟𝑛𝑒𝑙 𝑜𝑓 𝑠𝑖𝑧𝑒 16𝑥16 =
26 ∗ 26

16 ∗ 16
= 2.64

This implies, shared memory implementation using overlapping memory with effective

size of 16x16 has 2.64 more threads within the block than the shared memory with no

overlap implementation. We obtain a speed up of over 133 for images of size 4096x4096

and kernel size 11x11 when using shared with constant memory implementation over a

serial implementation.

What is the significance of the texture memory implementation?

The texture memory has the significance of providing constant memory access. The texture

memory refers to global memory with an additional cache architecture. Therefore, the

additional execution time observed is because of cache misses. We observe regardless of

block size or image size, the total time to perform convolution with texture memory is

almost directly proportional to the size of the kernel. This is because, texture memory is

optimized for threads close to another within a block to access spatially close memory

locations. However, our algorithm for convolution involves having a single thread access

multiple memory location that are within a spatial locality. Furthermore, due to multiple

threads accessing same memory locations, the throughput of the system decreases. We

would get better performance if like in [4] if our algorithm used each block to calculate the

value of a single pixel.

How is constant memory implementation providing slightly better performance?

Constant memory is a read only memory. This memory is allocated at the beginning of

program executions and its value is only changed during the lifetime of the program.

Moreover, constant memory makes use of constant memory caches to improve memory

access time.

Project No: SCSE20-0356

43

4.1.2 Effect of image size on convolution algorithms

Table 6 - Execution time comparison based on image size.

Image Size Serial
Naïve

Parallel

Shared

Memory

Parallel

Constant

Memory

Parallel

Shared +

Constant

Memory

Parallel

Texture

Memory

Parallel

2D

Texture

Memory

Parallel

256x256 90.292 11.656 18.757 6.548 14.7 12.36 12.357

512x512 363.994 24.448 28.459 23.014 24.674 27.209 27.182

1024x1024 1460.294 38.769 46.953 36.781 38.828 46.728 46.296

2048x2048 14338.897 140.347 326.226 130.3 254.415 323.84 324.192

4096x4096 57356.285 581.864 1299.01 548.667 1015.172 1263.854 1285.623

Figure 41 - Image size comparison for serial & parallel

\

Project No: SCSE20-0356

44

Figure 42 - Image size comparison for different parallel methods

4.1.2.1 Observations

• Serial implementation execution time increases almost exponentially, while

parallel implementations appear to be constant from figure 41.

• Parallel implementations resemble that of the serial implementations when the time

scale is reduced.

Project No: SCSE20-0356

45

4.1.3 Effect of block size on convolution algorithms

Table 7- Execution time comparison based on block size.

Block

Size

Naïve

Parallel

Shared

Memory

Parallel

Constant

Memory

Parallel

Shared +

Constant

Memory

Parallel

Texture

Memory

Parallel

2D

Texture

Memory

Parallel

16x16 42.608 86.116 38.732 65.934 85.434 85.063

24x24 39.72 51.478 38.216 42.868 86.405 87.228

32x32 37.19 43.77 34.697 37.396 82.831 82.851

Figure 43 - Block size comparison for different parallel methods

Block size has a variant effect. This is because, as the number of threads per blocks

decreases, the number of blocks increases. Whereas, to reduce the number of blocks, the

number of threads per block must increase.

We can also interpret that shared memory implementations are greatly affected by block

size. This is because the number of blocks into which the image is sliced into varies

according to block width.

Project No: SCSE20-0356

46

4.2 OpenCV Results

Table 8 - Serial Vs Parallel OpenCV convolution comparison

Image Size Kernel Size Serial (ms) CUDA (ms) Speedup

256x256

3x3 0.85 51.26 0.02

5x5 1.99 38.49 0.05

7x7 3.75 38.22 0.10

9x9 13.81 38.38 0.36

11x11 13.84 38.24 0.36

512x512

3x3 2.98 53.03 0.06

5x5 7.82 51.79 0.15

7x7 14.8 46.05 0.32

9x9 32.86 45.24 0.73

11x11 32.92 45 0.73

1024x1024

3x3 12.03 59.22 0.20

5x5 31.23 57.44 0.54

7x7 59.305 56.81 1.04

9x9 96 57.31 1.68

11x11 96.25 58.35 1.65

2048x2048

3x3 47.37 118.51 0.40

5x5 125.08 108.7 1.15

7x7 238.275 108.554 2.19

9x9 323.742 108.8 2.98

11x11 382.21 109.18 3.50

4096x4096

3x3 189.7 307.27 0.62

5x5 500.11 306.69 1.63

7x7 955.27 307.77 3.10

9x9 1203.08 306.96 3.92

11x11 1208.77 308.47 3.92

Time taken for serial implementation increases with increase in kernel width, whereas time

taken for OpenCV’s CUDA implementation remains almost constant regardless of kernel

size. At lower image sizes, serial implementation provides significantly better performance.

However, as image size increases, CUDA implementation provides consistent and better

performance.

Project No: SCSE20-0356

47

When compared to a pure CUDA C implementation, we observe that OpenCV’s serial

implementation is significantly more optimized than a serial implementation in CUDA C.

OpenCV’s CUDA implementation provides constant performance regardless of kernel size.

At lower image sizes (<1024), CUDA C provides better performance but the converse is

true for images of larger sizes.

Figure 44 - OpenCV CUDA convolution

(Image Size 2048x2048 & Kernel Size 32x32)

The OpenCV CUDA convolution results however include stitching lines depending on

image size. These can be avoided but the speedup would reduce from 3.5 to at most 1.35

for an image of size 2048x2048 and kernel of size 11x11. This is done by changing the user

defined block size while creating the convolutional pointer.

As we can see evidently from the code snippets, OpenCV’s CUDA implementation

provides a much easier interface to take advantage of a machines GPU architecture.

However, The CUDA C implementation provides correct results with a speedup of 4.15 as

opposed to 1.35 of OpenCV when compared to OpenCV’s serial implementation.

Project No: SCSE20-0356

48

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In conclusion, convolution is an essential component of an image recognition algorithm.

Any progress made to improve the efficiency of the convolution process will greatly impact

the processing time of the algorithm. These advances can be made by exploiting the

resources provided on the Jetson Nano GPU with help of the CUDA architecture by using

a combination of methods. With the help of CUDA convolution methods, we have

accomplished a speedup of up to 133 for an image of size 2048x2048 and a kernel of size

11x11 when compared to a serial implementation. We also observe that our CUDA C

outperforms OpenCV’s CUDA implementation with good accuracy and good speedup.

Similar methods can be used across different sections of a CNN to improve its throughput

and thereby improve image recognition algorithms.

5.2 Recommendation in Future Work

• Conduct performance analysis for other CUDA interfaces.

• Find optimizations for other parts of CNN such as max pooling.

Project No: SCSE20-0356

49

References
[1] S. Choi and K. Lee, "A CUDA-based implementation of convolutional neural

network," 2017 4th International Conference on Computer Applications and

Information Processing Technology (CAIPT), Kuta Bali, 2017, pp. 1-4.

[2] B. Shi, S. Chen, F. Huang, C. Wang and K. Bi, "The Parallel Processing Based on

CUDA for Convolution Filter FDK Reconstruction of CT," 2010 3rd International

Symposium on Parallel Architectures, Algorithms and Programming, Dalian, 2010,

pp. 149-153.

[3] L. M. Russo, E. C. Pedrino, E. Kato and V. O. Roda, "Image convolution

processing: A GPU versus FPGA comparison," 2012 VIII Southern Conference on

Programmable Logic, Bento Goncalves, 2012, pp. 1-6.

[4] L. Feng, D. Zheng and J. Yu, "CUDA Optimization Method for Activation

Function in Convolution Operation," 2019 IEEE Intl Conf on Parallel & Distributed

Processing with Applications, Big Data & Cloud Computing, Sustainable

Computing & Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom), Xiamen, China, 2019, pp. 519-525.

[5] E. Cervera, "GPU-Accelerated Vision for Robots: Improving System Throughput

Using OpenCV and CUDA," in IEEE Robotics & Automation Magazine, vol. 27,

no. 2, pp. 151-158, June 2020.

[6] D. Vintache, B. Humbert and D. Brasse, "Iterative reconstruction for transmission

tomography on GPU using Nvidia CUDA," in Tsinghua Science and Technology,

vol. 15, no. 1, pp. 11-16, Feb. 2010.

[7] CUDA C++ programming guide. (2006). Retrieved March 20, 2021, from

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[8] NVIDIA cuDNN. (2021, January 28). Retrieved March 21, 2021, from

https://developer.nvidia.com/cudnn

[9] “NVIDIA TensorRT.” NVIDIA Developer, 11 Feb. 2021,

https://developer.nvidia.com/tensorrt.

[10] Computer vision: What it is and why it matters. (n.d.). Retrieved March 20, 2021,

from https://www.sas.com/en_us/insights/analytics/computer-vision.html.

[11] Dataman, D. (2020, December 07). What is image recognition? Retrieved March

15, 2021, from https://medium.com/dataman-in-ai/module-6-image-recognition-

for-insurance-claim-handling-part-i-a338d16c9de0

[12] Jetson nano developer kit. (2021, January 28). Retrieved March 16, 2021, from

https://developer.nvidia.com/embedded/jetson-nano-developer-kit.

[13] Getting started with jetson nano developer kit. (2021, March 11). Retrieved March

15, 2021, from https://developer.nvidia.com/embedded/learn/get-started-jetson-

nano-devkit.

Project No: SCSE20-0356

50

[14] Connect to wifi network through ubuntu terminal. Retrieved March 16, 2021, from

https://askubuntu.com/questions/294257/connect-to-wifi-network-through-

ubuntu-terminal

[15] NVIDIA shield TV 4k hdr. (n.d.). Retrieved March 17, 2021, from

https://www.nvidia.com/en-us/shield/

[16] NVIDIA. (2020, August 25). CUDA refresher: The CUDA programming model.

Retrieved March 15, 2021, from https://developer.nvidia.com/blog/cuda-refresher-

cuda-programming-model/

[17] Initialization and information. (n.d.). Retrieved March 21, 2021, from

https://docs.opencv.org/3.4/d8/d40/group__cudacore__init.html

[18] Embedded Boards & Systems (n.d.). Retrieved March 15, 2021, from

https://www.avnet.com/shop/us/c/embedded-boards-systems/

Project No: SCSE20-0356

51

Appendix

Appendix A

Table 9 - Table with execution time for different convolution implementation styles

Block Dim Image Size Kernel Size Serial Naïve Parallel
Shared Memory

Parallel

Constant Memory

Parallel

Shared +

Constant Memory

Parallel

Texture Memory

Parallel

2D Texture

Memory Parallel

3x3 19.441 5.84 7.181 3.312 4.505 4.652 4.183

5x5 49.861 7.34 9.653 4.513 8.064 7.699 7.71

7x7 90.292 11.656 18.757 6.548 14.7 12.36 12.357

9x9 143.523 13.371 21.877 7.172 17.971 18.419 18.45

11x11 208.978 19.07 19.296 10.128 20.972 18.558 19.003

3x3 75.408 19.588 12.78 7.8 9.991 11.521 10.495

5x5 197.797 16.741 20.109 14.477 16.147 24.238 24.787

7x7 363.994 24.448 28.459 23.014 24.674 27.209 27.182

9x9 588.575 22.005 25.262 26.221 25.703 29.397 32.191

11x11 864.658 24.921 28.228 27.175 30.296 31.767 29.996

3x3 299.043 35.054 25.579 21.29 22.179 26.244 26.819

5x5 799.245 35.986 37.061 32.964 35.688 39.628 41.157

7x7 1460.294 38.769 46.953 36.781 38.828 46.728 46.296

9x9 2396.45 41.632 43.356 34.545 35.815 62.863 63.199

11x11 3571.452 42.608 86.116 38.732 65.934 85.434 85.063

3x3 1220.997 62.687 69.035 58.777 59.734 73.485 74.896

5x5 3356.846 65.346 82.956 66.708 71.283 111.289 111.302

7x7 6241.395 92.023 134.257 90.494 106.825 167.49 167.318

9x9 9879.396 105.607 154.041 97.149 125.696 238.044 237.523

11x11 14338.897 140.347 326.226 130.3 254.415 323.84 324.192

3x3 5588.372 284.51 299.446 252.413 257.238 320.966 303.842

5x5 13935.337 317.156 354.913 287.956 310.331 468.274 468.397

7x7 25023.135 413.184 555.188 387.354 457.864 676.534 678.619

9x9 39502.422 454.032 625.457 417.678 530.631 949.636 947.247

11x11 57356.285 581.864 1299.01 548.667 1015.172 1263.854 1285.623

3x3 19.25 5.857 6.763 3.355 3.301 4.663 4.002

5x5 50.001 7.606 9.119 4.241 4.413 8.041 8.082

7x7 90.404 11.836 14.987 6.38 6.44 12.991 13.082

9x9 143.294 14.358 17.024 7.044 7.54 19.57 19.499

11x11 208.328 20.503 17.312 10.102 12.102 20.226 19.41

3x3 75.184 19.063 10.843 7.218 7.655 11.952 8.845

5x5 197.103 27.096 18.337 13.75 14.175 21.901 22.013

7x7 359.901 24.866 21.25 22.522 21.872 28.219 24.666

9x9 583.594 22.713 24.407 25.065 19.955 27.431 26.056

11x11 849.478 23.228 26.295 22.987 26.775 26.496 27.247

3x3 299.334 32.187 22.103 17.986 20.879 26.629 26.465

5x5 797.717 34.081 34.523 29.905 34.488 39.491 39.033

7x7 1456.811 36.067 36.808 34.71 37.282 46.958 47.72

9x9 2395.488 34.79 35.342 34.019 34.275 64.541 65.068

11x11 3574.074 39.72 51.478 38.216 42.868 86.405 87.228

3x3 1215.714 76.38 68.785 62.169 59.667 77.254 77.505

5x5 3347.842 74.367 81.44 70.656 70.737 115.882 115.877

7x7 6224 99.994 110.182 93.631 89.168 172.896 175.947

9x9 9855.117 112.727 126.462 99.224 104.171 245.411 247.42

11x11 14318.065 149.729 204.634 135.144 158.983 333.184 336.151

3x3 5604.938 283.295 334.31 295.605 291.544 331.776 332.333

5x5 13874.678 322.506 390.105 339.047 341.3 486.904 483.718

7x7 25054.182 426.451 499.259 440.226 421.063 702.671 702.852

9x9 39479.602 475.103 558.264 463.039 476.909 973.57 975.996

11x11 57337.051 637.999 853.983 598.697 680.945 1312.911 1321.027

3x3 19.278 5.699 6.603 3.846 5.13 7.152 3.751

5x5 49.813 7.202 9.252 7.012 7.427 13.323 7.566

7x7 90.326 11.351 13.485 11.053 10.153 22.83 12.315

9x9 143.339 12.893 16.174 12.282 12.768 18.592 18.177

11x11 208.614 19.13 15.817 18.374 18.561 18.351 17.925

3x3 75.156 18.51 10.594 7.335 8.576 12.59 8.777

5x5 197.046 25.503 17.634 13.304 13.858 20.654 21.821

7x7 359.888 24.261 20.927 21.8 20.221 25.662 25.858

9x9 585.076 26.455 22.888 24.724 25.38 29.373 28.615

11x11 849.793 24.926 25.694 25.541 25.871 28.549 27.073

3x3 299.407 30.382 21.542 17.783 18.163 26.277 26.457

5x5 799.383 32.051 31.281 30.258 29.853 38.409 37.728

7x7 1456.731 37.045 36.269 35.103 33.694 45.603 45.64

9x9 2398.076 35.247 34.35 31.84 36.308 61.787 61.899

11x11 3577.877 37.19 43.77 34.697 37.396 82.831 82.851

3x3 1215.928 68.256 67.265 62.2 60.703 74.503 75.774

5x5 3344.906 73.058 78.308 70.536 69.424 111.012 111.117

7x7 6217.988 97.134 105.562 93.166 85.617 166.8 167.44

9x9 9853.688 106.171 118.876 99.1 98.07 236.722 235.226

11x11 14313.627 142.615 171.994 134.384 129.324 320.517 319.989

3x3 5610.314 283.159 319.587 300.769 292.308 333.626 319.221

5x5 13883.563 344.193 367.635 337.71 331.043 475.14 463.14

7x7 24993.002 448.242 478.183 435.008 397.34 670.511 666.386

9x9 39547.781 480.604 525.686 460.759 443.522 935.217 931.51

11x11 57306.035 616.089 724.562 594.588 557.783 1264.485 1262.321

2048x2048

2048x2048

16x16

24x24

32x32

256x256

512x512

1024x1024

4096x4096

256x256

512x512

1024x1024

4096x4096

256x256

512x512

1024x1024

4096x4096

2048x2048

Project No: SCSE20-0356

52

Appendix B

Table 10 - Table with speedup of different convolution implementation styles

Block Dim Image Size Kernel Size Serial Naïve Parallel
Shared Memory

Parallel

Constant Memory

Parallel

Shared +

Constant Memory

Parallel

Texture Memory

Parallel

2D Texture

Memory Parallel

3x3 1 3.33 2.71 5.87 4.32 4.18 4.65

5x5 1 6.79 5.17 11.05 6.18 6.48 6.47

7x7 1 7.75 4.81 13.79 6.14 7.31 7.31

9x9 1 10.73 6.56 20.01 7.99 7.79 7.78

11x11 1 10.96 10.83 20.63 9.96 11.26 11.00

3x3 1 3.85 5.90 9.67 7.55 6.55 7.19

5x5 1 11.82 9.84 13.66 12.25 8.16 7.98

7x7 1 14.89 12.79 15.82 14.75 13.38 13.39

9x9 1 26.75 23.30 22.45 22.90 20.02 18.28

11x11 1 34.70 30.63 31.82 28.54 27.22 28.83

3x3 1 8.53 11.69 14.05 13.48 11.39 11.15

5x5 1 22.21 21.57 24.25 22.40 20.17 19.42

7x7 1 37.67 31.10 39.70 37.61 31.25 31.54

9x9 1 57.56 55.27 69.37 66.91 38.12 37.92

11x11 1 83.82 41.47 92.21 54.17 41.80 41.99

3x3 1 19.48 17.69 20.77 20.44 16.62 16.30

5x5 1 51.37 40.47 50.32 47.09 30.16 30.16

7x7 1 67.82 46.49 68.97 58.43 37.26 37.30

9x9 1 93.55 64.13 101.69 78.60 41.50 41.59

11x11 1 102.17 43.95 110.05 56.36 44.28 44.23

3x3 1 19.64 18.66 22.14 21.72 17.41 18.39

5x5 1 43.94 39.26 48.39 44.90 29.76 29.75

7x7 1 60.56 45.07 64.60 54.65 36.99 36.87

9x9 1 87.00 63.16 94.58 74.44 41.60 41.70

11x11 1 98.57 44.15 104.54 56.50 45.38 44.61

3x3 1 3.29 2.85 5.74 5.83 4.13 4.81

5x5 1 6.57 5.48 11.79 11.33 6.22 6.19

7x7 1 7.64 6.03 14.17 14.04 6.96 6.91

9x9 1 9.98 8.42 20.34 19.00 7.32 7.35

11x11 1 10.16 12.03 20.62 17.21 10.30 10.73

3x3 1 3.94 6.93 10.42 9.82 6.29 8.50

5x5 1 7.27 10.75 14.33 13.90 9.00 8.95

7x7 1 14.47 16.94 15.98 16.45 12.75 14.59

9x9 1 25.69 23.91 23.28 29.25 21.27 22.40

11x11 1 36.57 32.31 36.95 31.73 32.06 31.18

3x3 1 9.30 13.54 16.64 14.34 11.24 11.31

5x5 1 23.41 23.11 26.68 23.13 20.20 20.44

7x7 1 40.39 39.58 41.97 39.08 31.02 30.53

9x9 1 68.86 67.78 70.42 69.89 37.12 36.82

11x11 1 89.98 69.43 93.52 83.37 41.36 40.97

3x3 1 15.92 17.67 19.55 20.37 15.74 15.69

5x5 1 45.02 41.11 47.38 47.33 28.89 28.89

7x7 1 62.24 56.49 66.47 69.80 36.00 35.37

9x9 1 87.42 77.93 99.32 94.61 40.16 39.83

11x11 1 95.63 69.97 105.95 90.06 42.97 42.59

3x3 1 19.78 16.77 18.96 19.23 16.89 16.87

5x5 1 43.02 35.57 40.92 40.65 28.50 28.68

7x7 1 58.75 50.18 56.91 59.50 35.66 35.65

9x9 1 83.10 70.72 85.26 82.78 40.55 40.45

11x11 1 89.87 67.14 95.77 84.20 43.67 43.40

3x3 1 3.38 2.92 5.01 3.76 2.70 5.14

5x5 1 6.92 5.38 7.10 6.71 3.74 6.58

7x7 1 7.96 6.70 8.17 8.90 3.96 7.33

9x9 1 11.12 8.86 11.67 11.23 7.71 7.89

11x11 1 10.91 13.19 11.35 11.24 11.37 11.64

3x3 1 4.06 7.09 10.25 8.76 5.97 8.56

5x5 1 7.73 11.17 14.81 14.22 9.54 9.03

7x7 1 14.83 17.20 16.51 17.80 14.02 13.92

9x9 1 22.12 25.56 23.66 23.05 19.92 20.45

11x11 1 34.09 33.07 33.27 32.85 29.77 31.39

3x3 1 9.85 13.90 16.84 16.48 11.39 11.32

5x5 1 24.94 25.55 26.42 26.78 20.81 21.19

7x7 1 39.32 40.16 41.50 43.23 31.94 31.92

9x9 1 68.04 69.81 75.32 66.05 38.81 38.74

11x11 1 96.21 81.74 103.12 95.68 43.19 43.18

3x3 1 17.81 18.08 19.55 20.03 16.32 16.05

5x5 1 45.78 42.71 47.42 48.18 30.13 30.10

7x7 1 64.01 58.90 66.74 72.63 37.28 37.14

9x9 1 92.81 82.89 99.43 100.48 41.63 41.89

11x11 1 100.37 83.22 106.51 110.68 44.66 44.73

3x3 1 19.81 17.55 18.65 19.19 16.82 17.58

5x5 1 40.34 37.76 41.11 41.94 29.22 29.98

7x7 1 55.76 52.27 57.45 62.90 37.27 37.51

9x9 1 82.29 75.23 85.83 89.17 42.29 42.46

11x11 1 93.02 79.09 96.38 102.74 45.32 45.40

32x32

256x256

512x512

1024x1024

4096x4096

2048x2048

24x24

256x256

512x512

1024x1024

4096x4096

2048x2048

16x16

256x256

512x512

1024x1024

4096x4096

2048x2048

Project No: SCSE20-0356

53

Appendix C

Table 11 - Table with execution time for shared memory implementations with updated block size

value

Block Dim Image Size Kernel Size Serial Naïve Parallel
Shared Memory

Parallel

Constant Memory

Parallel

Shared +

Constant Memory

Parallel

Texture Memory

Parallel

2D Texture

Memory Parallel

3x3 19.441 5.84 6.548 3.312 3.858 4.652 4.183

5x5 49.861 7.34 9.191 4.513 7.636 7.699 7.71

7x7 90.292 11.656 14.69 6.548 11.001 12.36 12.357

9x9 143.523 13.371 16.908 7.172 13.605 18.419 18.45

11x11 208.978 19.07 17.592 10.128 20.965 18.558 19.003

3x3 75.408 19.588 22.979 7.8 7.363 11.521 10.495

5x5 197.797 16.741 18.929 14.477 14.789 24.238 24.787

7x7 363.994 24.448 24.316 23.014 21.778 27.209 27.182

9x9 588.575 22.005 24.398 26.221 20.149 29.397 32.191

11x11 864.658 24.921 27.147 27.175 22.64 31.767 29.996

3x3 299.043 35.054 29.083 21.29 17.755 26.244 26.819

5x5 799.245 35.986 35.353 32.964 32.304 39.628 41.157

7x7 1460.294 38.769 36.398 36.781 32.628 46.728 46.296

9x9 2396.45 41.632 34.587 34.545 31.475 62.863 63.199

11x11 3571.452 42.608 48.67 38.732 37.41 85.434 85.063

3x3 1220.997 62.687 69.641 58.777 59.637 73.485 74.896

5x5 3356.846 65.346 82.969 66.708 71.234 111.289 111.302

7x7 6241.395 92.023 114.42 90.494 90.086 167.49 167.318

9x9 9879.396 105.607 125.606 97.149 103.984 238.044 237.523

11x11 14338.897 140.347 193.964 130.3 144.92 323.84 324.192

3x3 5588.372 284.51 272.124 252.413 227.738 320.966 303.842

5x5 13935.337 317.156 328.233 287.956 282.912 468.274 468.397

7x7 25023.135 413.184 451.279 387.354 357.394 676.534 678.619

9x9 39502.422 454.032 492.492 417.678 413.713 949.636 947.247

11x11 57356.285 581.864 746.505 548.667 572.056 1263.854 1285.623

3x3 19.25 5.857 7.297 3.355 5.216 4.663 4.002

5x5 50.001 7.606 9.611 4.241 7.294 8.041 8.082

7x7 90.404 11.836 14.799 6.38 10.893 12.991 13.082

9x9 143.294 14.358 16.105 7.044 12.652 19.57 19.499

11x11 208.328 20.503 10.102 20.226 19.41

3x3 75.184 19.063 26.188 7.218 17.406 11.952 8.845

5x5 197.103 27.096 21.112 13.75 23.72 21.901 22.013

7x7 359.901 24.866 22.096 22.522 21.894 28.219 24.666

9x9 583.594 22.713 23.467 25.065 25.8 27.431 26.056

11x11 849.478 23.228 22.987 26.496 27.247

3x3 299.334 32.187 35.671 17.986 28.578 26.629 26.465

5x5 797.717 34.081 34.784 29.905 31.4 39.491 39.033

7x7 1456.811 36.067 35.464 34.71 34.328 46.958 47.72

9x9 2395.488 34.79 34.13 34.019 31.846 64.541 65.068

11x11 3574.074 39.72 38.216 86.405 87.228

3x3 1215.714 76.38 72.798 62.169 68.388 77.254 77.505

5x5 3347.842 74.367 84.195 70.656 70.529 115.882 115.877

7x7 6224 99.994 111.453 93.631 88.737 172.896 175.947

9x9 9855.117 112.727 117.822 99.224 97.739 245.411 247.42

11x11 14318.065 149.729 135.144 333.184 336.151

3x3 5604.938 283.295 303.216 295.605 252.759 331.776 332.333

5x5 13874.678 322.506 343.535 339.047 290.315 486.904 483.718

7x7 25054.182 426.451 452.955 440.226 369.469 702.671 702.852

9x9 39479.602 475.103 478.603 463.039 408.613 973.57 975.996

11x11 57337.051 637.999 598.697 1312.911 1321.027

2048x2048

2048x2048

16x16

256x256

512x512

1024x1024

4096x4096

24x24

256x256

512x512

1024x1024

4096x4096

Project No: SCSE20-0356

54

Appendix D

Table 12 - Table with Speedup for shared memory implementations with updated block size value

Block Dim Image Size Kernel Size Serial Naïve Parallel
Shared Memory

Parallel

Constant Memory

Parallel

Shared +

Constant Memory

Parallel

Texture Memory

Parallel

2D Texture

Memory Parallel

3x3 1.00 3.33 2.97 5.87 5.04 4.18 4.65

5x5 1.00 6.79 5.42 11.05 6.53 6.48 6.47

7x7 1.00 7.75 6.15 13.79 8.21 7.31 7.31

9x9 1.00 10.73 8.49 20.01 10.55 7.79 7.78

11x11 1.00 10.96 11.88 20.63 9.97 11.26 11.00

3x3 1.00 3.85 3.28 9.67 10.24 6.55 7.19

5x5 1.00 11.82 10.45 13.66 13.37 8.16 7.98

7x7 1.00 14.89 14.97 15.82 16.71 13.38 13.39

9x9 1.00 26.75 24.12 22.45 29.21 20.02 18.28

11x11 1.00 34.70 31.85 31.82 38.19 27.22 28.83

3x3 1.00 8.53 10.28 14.05 16.84 11.39 11.15

5x5 1.00 22.21 22.61 24.25 24.74 20.17 19.42

7x7 1.00 37.67 40.12 39.70 44.76 31.25 31.54

9x9 1.00 57.56 69.29 69.37 76.14 38.12 37.92

11x11 1.00 83.82 73.38 92.21 95.47 41.80 41.99

3x3 1.00 19.48 17.53 20.77 20.47 16.62 16.30

5x5 1.00 51.37 40.46 50.32 47.12 30.16 30.16

7x7 1.00 67.82 54.55 68.97 69.28 37.26 37.30

9x9 1.00 93.55 78.65 101.69 95.01 41.50 41.59

11x11 1.00 102.17 73.93 110.05 98.94 44.28 44.23

3x3 1.00 19.64 20.54 22.14 24.54 17.41 18.39

5x5 1.00 43.94 42.46 48.39 49.26 29.76 29.75

7x7 1.00 60.56 55.45 64.60 70.02 36.99 36.87

9x9 1.00 87.00 80.21 94.58 95.48 41.60 41.70

11x11 1.00 98.57 76.83 104.54 100.26 45.38 44.61

3x3 1.00 3.29 2.64 5.74 3.69 4.13 4.81

5x5 1.00 6.57 5.20 11.79 6.86 6.22 6.19

7x7 1.00 7.64 6.11 14.17 8.30 6.96 6.91

9x9 1.00 9.98 8.90 20.34 11.33 7.32 7.35

11x11 1.00 10.16 20.62 10.30 10.73

3x3 1.00 3.94 2.87 10.42 4.32 6.29 8.50

5x5 1.00 7.27 9.34 14.33 8.31 9.00 8.95

7x7 1.00 14.47 16.29 15.98 16.44 12.75 14.59

9x9 1.00 25.69 24.87 23.28 22.62 21.27 22.40

11x11 1.00 36.57 36.95 32.06 31.18

3x3 1.00 9.30 8.39 16.64 10.47 11.24 11.31

5x5 1.00 23.41 22.93 26.68 25.41 20.20 20.44

7x7 1.00 40.39 41.08 41.97 42.44 31.02 30.53

9x9 1.00 68.86 70.19 70.42 75.22 37.12 36.82

11x11 1.00 89.98 93.52 41.36 40.97

3x3 1.00 15.92 16.70 19.55 17.78 15.74 15.69

5x5 1.00 45.02 39.76 47.38 47.47 28.89 28.89

7x7 1.00 62.24 55.84 66.47 70.14 36.00 35.37

9x9 1.00 87.42 83.64 99.32 100.83 40.16 39.83

11x11 1.00 95.63 #DIV/0! 105.95 #DIV/0! 42.97 42.59

3x3 1.00 19.78 18.48 18.96 22.18 16.89 16.87

5x5 1.00 43.02 40.39 40.92 47.79 28.50 28.68

7x7 1.00 58.75 55.31 56.91 67.81 35.66 35.65

9x9 1.00 83.10 82.49 85.26 96.62 40.55 40.45

11x11 1.00 89.87 95.77 43.67 43.40

24x24

256x256

512x512

1024x1024

4096x4096

2048x2048

16x16

256x256

512x512

1024x1024

4096x4096

2048x2048

Project No: SCSE20-0356

55

Appendix E

Table 13 - Table with execution time for share memory implementations with no overlapping

between blocks

Block Dim Image Size Kernel Size Serial Naïve Parallel
Shared Memory

Parallel

Constant Memory

Parallel

Shared +

Constant Memory

Parallel

Texture Memory

Parallel

2D Texture

Memory Parallel

3x3 19.441 5.84 5.438 3.312 4.932 4.652 4.183

5x5 49.861 7.34 7.183 4.513 6.422 7.699 7.71

7x7 90.292 11.656 8.768 6.548 8.673 12.36 12.357

9x9 143.523 13.371 10.108 7.172 9.538 18.419 18.45

11x11 208.978 19.07 13.125 10.128 12.533 18.558 19.003

3x3 75.408 19.588 18.356 7.8 9.16 11.521 10.495

5x5 197.797 16.741 23.804 14.477 11.868 24.238 24.787

7x7 363.994 24.448 18.591 23.014 15.366 27.209 27.182

9x9 588.575 22.005 21.144 26.221 18.433 29.397 32.191

11x11 864.658 24.921 26.621 27.175 23.265 31.767 29.996

3x3 299.043 35.054 36.643 21.29 21.208 26.244 26.819

5x5 799.245 35.986 36.369 32.964 32.244 39.628 41.157

7x7 1460.294 38.769 35.679 36.781 35.459 46.728 46.296

9x9 2396.45 41.632 36.41 34.545 35.495 62.863 63.199

11x11 3571.452 42.608 36.289 38.732 35.355 85.434 85.063

3x3 1220.997 62.687 62.658 58.777 55.827 73.485 74.896

5x5 3356.846 65.346 68.737 66.708 63.523 111.289 111.302

7x7 6241.395 92.023 80.855 90.494 70.481 167.49 167.318

9x9 9879.396 105.607 87.284 97.149 78.589 238.044 237.523

11x11 14338.897 140.347 104.236 130.3 92.143 323.84 324.192

3x3 5588.372 284.51 283.468 252.413 248.443 320.966 303.842

5x5 13935.337 317.156 310.968 287.956 278.139 468.274 468.397

7x7 25023.135 413.184 356.321 387.354 314.056 676.534 678.619

9x9 39502.422 454.032 381.759 417.678 330.522 949.636 947.247

11x11 57356.285 581.864 445.37 548.667 400.262 1263.854 1285.623

3x3 19.25 5.857 5.439 3.355 4.721 4.663 4.002

5x5 50.001 7.606 6.848 4.241 6.12 8.041 8.082

7x7 90.404 11.836 8.817 6.38 7.945 12.991 13.082

9x9 143.294 14.358 10.117 7.044 9.504 19.57 19.499

11x11 208.328 20.503 12.887 10.102 12.097 20.226 19.41

3x3 75.184 19.063 18.271 7.218 9.563 11.952 8.845

5x5 197.103 27.096 24.25 13.75 12.265 21.901 22.013

7x7 359.901 24.866 21.243 22.522 16.021 28.219 24.666

9x9 583.594 22.713 21.892 25.065 19.52 27.431 26.056

11x11 849.478 23.228 28.39 22.987 24.74 26.496 27.247

3x3 299.334 32.187 32.575 17.986 21.493 26.629 26.465

5x5 797.717 34.081 34.416 29.905 33.972 39.491 39.033

7x7 1456.811 36.067 35.749 34.71 34.334 46.958 47.72

9x9 2395.488 34.79 36.924 34.019 34.131 64.541 65.068

11x11 3574.074 39.72 36.763 38.216 36.317 86.405 87.228

3x3 1215.714 76.38 77.984 62.169 63.602 77.254 77.505

5x5 3347.842 74.367 78.516 70.656 72.277 115.882 115.877

7x7 6224 99.994 88.212 93.631 77.595 172.896 175.947

9x9 9855.117 112.727 94.058 99.224 86.169 245.411 247.42

11x11 14318.065 149.729 110.438 135.144 100.282 333.184 336.151

3x3 5604.938 283.295 312.093 295.605 282.771 331.776 332.333

5x5 13874.678 322.506 344.854 339.047 312.837 486.904 483.718

7x7 25054.182 426.451 391.519 440.226 351.009 702.671 702.852

9x9 39479.602 475.103 415.94 463.039 383.764 973.57 975.996

11x11 57337.051 637.999 477.838 598.697 428.98 1312.911 1321.027

3x3 19.278 5.699 5.656 3.846 4.873 7.152 3.751

5x5 49.813 7.202 6.966 7.012 6.333 13.323 7.566

7x7 90.326 11.351 8.971 11.053 8.12 22.83 12.315

9x9 143.339 12.893 10.33 12.282 10.206 18.592 18.177

11x11 208.614 19.13 13.026 18.374 12.524 18.351 17.925

3x3 75.156 18.51 19.448 7.335 9.499 12.59 8.777

5x5 197.046 25.503 24.744 13.304 12.174 20.654 21.821

7x7 359.888 24.261 20.225 21.8 16.072 25.662 25.858

9x9 585.076 26.455 21.568 24.724 19.049 29.373 28.615

11x11 849.793 24.926 27.1 25.541 23.67 28.549 27.073

3x3 299.407 30.382 31.093 17.783 21.816 26.277 26.457

5x5 799.383 32.051 32.679 30.258 33.234 38.409 37.728

7x7 1456.731 37.045 35.338 35.103 36.115 45.603 45.64

9x9 2398.076 35.247 35.955 31.84 36.332 61.787 61.899

11x11 3577.877 37.19 36.874 34.697 35.069 82.831 82.851

3x3 1215.928 68.256 67.265 56.52 60.703 74.503 75.774

5x5 3344.906 73.058 78.308 63.1 69.424 111.012 111.117

7x7 6217.988 97.134 105.562 71.436 85.617 166.8 167.44

9x9 9853.688 106.171 118.876 79.061 98.07 236.722 235.226

11x11 14313.627 142.615 171.994 92.198 129.324 320.517 319.989

3x3 5610.314 283.159 312.11 300.769 287.13 333.626 319.221

5x5 13883.563 344.193 339.741 337.71 315.953 475.14 463.14

7x7 24993.002 448.242 381.842 435.008 350.256 670.511 666.386

9x9 39547.781 480.604 411.655 460.759 383.705 935.217 931.51

11x11 57306.035 616.089 475.199 594.588 430.43 1264.485 1262.321

24x24

256x256

512x512

1024x1024

2048x2048

4096x4096

16x16

256x256

512x512

1024x1024

4096x4096

32x32

256x256

512x512

1024x1024

4096x4096

2048x2048

2048x2048

Project No: SCSE20-0356

56

Appendix F

Table 14 - Table with Speedup for share memory implementations with no overlapping between

blocks

Block Dim Image Size Kernel Size Serial Naïve Parallel
Shared Memory

Parallel

Constant Memory

Parallel

Shared +

Constant Memory

Parallel

Texture Memory

Parallel

2D Texture

Memory Parallel

3x3 1.00 3.33 3.58 5.87 3.94 4.18 4.65

5x5 1.00 6.79 6.94 11.05 7.76 6.48 6.47

7x7 1.00 7.75 10.30 13.79 10.41 7.31 7.31

9x9 1.00 10.73 14.20 20.01 15.05 7.79 7.78

11x11 1.00 10.96 15.92 20.63 16.67 11.26 11.00

3x3 1.00 3.85 4.11 9.67 8.23 6.55 7.19

5x5 1.00 11.82 8.31 13.66 16.67 8.16 7.98

7x7 1.00 14.89 19.58 15.82 23.69 13.38 13.39

9x9 1.00 26.75 27.84 22.45 31.93 20.02 18.28

11x11 1.00 34.70 32.48 31.82 37.17 27.22 28.83

3x3 1.00 8.53 8.16 14.05 14.10 11.39 11.15

5x5 1.00 22.21 21.98 24.25 24.79 20.17 19.42

7x7 1.00 37.67 40.93 39.70 41.18 31.25 31.54

9x9 1.00 57.56 65.82 69.37 67.52 38.12 37.92

11x11 1.00 83.82 98.42 92.21 101.02 41.80 41.99

3x3 1.00 19.48 19.49 20.77 21.87 16.62 16.30

5x5 1.00 51.37 48.84 50.32 52.84 30.16 30.16

7x7 1.00 67.82 77.19 68.97 88.55 37.26 37.30

9x9 1.00 93.55 113.19 101.69 125.71 41.50 41.59

11x11 1.00 102.17 137.56 110.05 155.62 44.28 44.23

3x3 1.00 19.64 19.71 22.14 22.49 17.41 18.39

5x5 1.00 43.94 44.81 48.39 50.10 29.76 29.75

7x7 1.00 60.56 70.23 64.60 79.68 36.99 36.87

9x9 1.00 87.00 103.47 94.58 119.52 41.60 41.70

11x11 1.00 98.57 128.78 104.54 143.30 45.38 44.61

3x3 1.00 3.29 3.54 5.74 4.08 4.13 4.81

5x5 1.00 6.57 7.30 11.79 8.17 6.22 6.19

7x7 1.00 7.64 10.25 14.17 11.38 6.96 6.91

9x9 1.00 9.98 14.16 20.34 15.08 7.32 7.35

11x11 1.00 10.16 16.17 20.62 17.22 10.30 10.73

3x3 1.00 3.94 4.11 10.42 7.86 6.29 8.50

5x5 1.00 7.27 8.13 14.33 16.07 9.00 8.95

7x7 1.00 14.47 16.94 15.98 22.46 12.75 14.59

9x9 1.00 25.69 26.66 23.28 29.90 21.27 22.40

11x11 1.00 36.57 29.92 36.95 34.34 32.06 31.18

3x3 1.00 9.30 9.19 16.64 13.93 11.24 11.31

5x5 1.00 23.41 23.18 26.68 23.48 20.20 20.44

7x7 1.00 40.39 40.75 41.97 42.43 31.02 30.53

9x9 1.00 68.86 64.88 70.42 70.19 37.12 36.82

11x11 1.00 89.98 97.22 93.52 98.41 41.36 40.97

3x3 1.00 15.92 15.59 19.55 19.11 15.74 15.69

5x5 1.00 45.02 42.64 47.38 46.32 28.89 28.89

7x7 1.00 62.24 70.56 66.47 80.21 36.00 35.37

9x9 1.00 87.42 104.78 99.32 114.37 40.16 39.83

11x11 1.00 95.63 129.65 105.95 142.78 42.97 42.59

3x3 1.00 19.78 17.96 18.96 19.82 16.89 16.87

5x5 1.00 43.02 40.23 40.92 44.35 28.50 28.68

7x7 1.00 58.75 63.99 56.91 71.38 35.66 35.65

9x9 1.00 83.10 94.92 85.26 102.87 40.55 40.45

11x11 1.00 89.87 119.99 95.77 133.66 43.67 43.40

3x3 1.00 3.38 3.41 5.01 3.96 2.70 5.14

5x5 1.00 6.92 7.15 7.10 7.87 3.74 6.58

7x7 1.00 7.96 10.07 8.17 11.12 3.96 7.33

9x9 1.00 11.12 13.88 11.67 14.04 7.71 7.89

11x11 1.00 10.91 16.02 11.35 16.66 11.37 11.64

3x3 1.00 4.06 3.86 10.25 7.91 5.97 8.56

5x5 1.00 7.73 7.96 14.81 16.19 9.54 9.03

7x7 1.00 14.83 17.79 16.51 22.39 14.02 13.92

9x9 1.00 22.12 27.13 23.66 30.71 19.92 20.45

11x11 1.00 34.09 31.36 33.27 35.90 29.77 31.39

3x3 1.00 9.85 9.63 16.84 13.72 11.39 11.32

5x5 1.00 24.94 24.46 26.42 24.05 20.81 21.19

7x7 1.00 39.32 41.22 41.50 40.34 31.94 31.92

9x9 1.00 68.04 66.70 75.32 66.00 38.81 38.74

11x11 1.00 96.21 97.03 103.12 102.02 43.19 43.18

3x3 1.00 17.81 18.08 21.51 20.03 16.32 16.05

5x5 1.00 45.78 42.71 53.01 48.18 30.13 30.10

7x7 1.00 64.01 58.90 87.04 72.63 37.28 37.14

9x9 1.00 92.81 82.89 124.63 100.48 41.63 41.89

11x11 1.00 100.37 83.22 155.25 110.68 44.66 44.73

3x3 1.00 19.81 17.98 18.65 19.54 16.82 17.58

5x5 1.00 40.34 40.87 41.11 43.94 29.22 29.98

7x7 1.00 55.76 65.45 57.45 71.36 37.27 37.51

9x9 1.00 82.29 96.07 85.83 103.07 42.29 42.46

11x11 1.00 93.02 120.59 96.38 133.14 45.32 45.40

24x24

256x256

512x512

1024x1024

2048x2048

4096x4096

16x16

256x256

512x512

1024x1024

4096x4096

2048x2048

32x32

256x256

512x512

1024x1024

4096x4096

2048x2048

